量子计算具有广泛的兴趣,因为它为从素数分解[1]到非结构化搜索[2]提供了指数或多项式加速。量子计算机的自然使用是对其他量子系统的模拟,在计算化学中具有众所周知的应用[3,4]和冷凝物质物理学[5,6]。近年来已经看到了量子计算机在基于晶格的Quanty场理论(QFT)模拟中提出的应用(参见参考文献。[7,8]及其参考文献,包括量子染色体动力学的模拟(QCD),该理论描述了夸克和胶子的基本相互作用。晶格QCD非常适合研究QCD的低能量(子GEV)行为,但是晶格尺寸的计算成本的迅速增加使得QCD QCD极具挑战性,可用于模拟碰撞,以在诸如大型Hadron Collider(例如LHC)等较高的高级胶卷中探测的最短长度量表(LHC)。在这些能量下,QCD耦合常数αs变小,因此扰动计算成为选择的方法。使用量子计算机在扰动QCD中模拟硬散射过程已在很大程度上尚未探索。一种模拟量子计算机上通用扰动QCD进程的方法仍然缺失,但由于多种原因是可取的。其次,此功能还意味着量子模拟可以很好地适合对具有高质量最终状态的过程具有完全干扰效应的计算。每个贡献都可以分解为颜色部分和运动部分。This may be in part because the aims of perturbative QFT calculations differ from the aims of most quantum simulations: most quantum simulations (including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary) evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the (Hermitian, but not unitary) transition matrix describing the scattering of specified external states and hence研究基本颗粒的产生或衰减。首先,扰动QCD计算需要评估许多不可观察的中间状态的贡献,这使得这种计算使自然候选者从量子计算机操纵量子状态的折叠的能力中受益。第三,通用扰动QCD过程的量子模拟可以通过利用已知量子算法(例如量子振幅估计)提供的加速度来提高扰动QCD预测的速度和精度[9-12]。本文的目的是采取步骤使用量子计算机模拟通用扰动QCD进程。扰动QCD中的计算可以通过求和Feynman图的贡献来执行。颜色部分比运动部分更简单,并且实际上存在有效的程序[13 - 18],用于计算经典计算机上的颜色因子。尽管如此,颜色部分仍然提出了在量子计算机上模拟扰动QCD过程的一些通用挑战。1作为例如,形成量子计算机的量子门必须始终是统一的,而feynman规则(颜色和运动学部分都)描述了Feynman图的组成部分,并非完全单位。这意味着颜色部分提供了一个有用的简化设置,可以使用该设置来开发Feynman图的量子计算的框架,因此它们将成为当前工作的重点。本文的主要结果是两个量子门Q和G,它们分别代表了描述Quark-gluon和Triple-Gluon相互作用顶点的Feynman规则的颜色部分。要实施这些门,我们介绍了一个单位化寄存器U的新概念,该概念可以模拟夸克和胶子的非空间相互作用。
主要关键词